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ON STOCHASTIC LEARNING THEORY

Merrill M. Flood

. Introduction

R. R. Bush and C. F. Mosteller', and also W. K. Rates*,

have proposed a stochastic theory of learning. They suppo3e

that the organism makes a sequence .f responbes among a fixed

finite set of alternatives, and that there is a probability

ps (t) at moment t that response 8 will occur before moment t+1.

They suppose further that the probabilities p.(t+1) are deter-

mined by: the p (t), the response s actually made after moment

t, and the event rt that fAlows after response ato Speolfically,

they assume the functional form:

rts
1.0) p(t+l) = 14t p(t)P

where p(t) Is the m-dimensional vector whose ath component is

ps(t), and Mrs is a square stochastic matrix of order m whose

elements Mrs depend only upon r and a.

One especially interesting case Is that in which there are

Jt two classes of events; for example, they might be reward

and non-reward. For the purposes of this paper, it will be

sufficient to consider only this case since the more general

caae presents no added di&tf'cuity. Our object in to narrow the

class of al)owable matrices M by making one more assumption

that seems quite reasonable.

"*Numbers refer to Bibliography at the end of the paper.



A number of suggestions have already been made for
epeclalizing the form of the matrices Mre; several of these are

discussed in a recent paper by R. R. Bush and G. L. Thompson, 5

both as to their mathe•matical form and as to their implications

from the standpoint of learning theory. 1. is entirely possible

that the proposal I am now making has already been considered

but, if so, it has not come to my attention.

2.

I like to think of the elements of' the matrices Mrs as

physical constants that are characteristic of the organism, just

as mass, color, and hardness may be thought of as physical con-

stants pertaining to an object. The values of tIw, M4 are to

be estimated on the baeit of data from an approprin.te experiment,

just as the mass of an object might be estimated from a set of

observationa taken during an experiment with a sprIng-balance.

Furthermore, my theory is op-rationally rell-defined on!-ly after

I specify some single analtical process for estirating the

constants, such as by averaging the observations.

This must be ,Oone by observin3 the organism in some situAtion

where a correspondence is set up between a sequence of observed

responses t and events rt and the formal quantities st and rt
-rs

in the theory; the estimates My arm nezessarily functions of

the observations bt and rt, though perhaps a dIfferent one for

e&ch parimeter. It doos not mattetr that I am as :-,t unable to

write these functions simply; all that is necessary IJs ,hat t~here

be a finite computational process that will yield the deaired



estimates Xrs in •%.rms of the obaervations Bt and rt for

t-l,2,.-.,N. To accomplish this, we first let p(t+l) be defined

by the recursion rolation

1 ~t p(t) for t

where NX1 and Pk(1) are defined to be the values of the parameters

MiJ and Pk(1) that maximize the "likelihood"

2.2) Lr pk(1)] i N (t).

t-1 t

There is nothing ne% in what I have 6aid so far, of course; these

expository rerimarks simply provide the background for what follows.

3. Syme t!2 and Scope

If the theory is to be of much interest, and wide use, it

must provide a valid description of a broad class of orfjianismic

behavior; the scope of the theory must be specified in. zerms of

bounds for the class of behavioral situations explained by the

theory. In particular, it should be possible to verify the theory

by testing it for only iome situations within a well-defined

subclass before using it confidentiy for predicticns concerning

the rem, aining situations of the subclass. I believe this is what

Is meant by the term theory in scientific usage.*

As a special oase, we might consider the autecass of all

"* "In scientific usage, a HYOTHxSIS is a provisional con-
jecture regarding the causes or reiations of certain phenomena;
a THERRf ' is a ';ypothesls which has undergone verification, and
which Is applicable to a large number of related phenomena."
i s New International Dictionary, Second Edition, Unabridged.
G. and C. MerrIam Company, Springf'elds, Mass., 1951, p. 2620.
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two-choice situations for all animals. Still more specially,

we might consider the subclass of all two-choice situations for

some cne huane consisting at any ..ne tirme of either: a) doing

some particular thing (such as blinking), cr b) not doing that

thing. There is a serious problem in identifying this choice

class at any one time with what appears to be the same situation

at another time, but the Important ting is to be able to do this

so well tnat the theory does in iaot choeok out oioseiy and often;

deviations between theoretical and obseried behavior must then

be sorted out after the fashlon of the statistician and if after

probing they seem to be unexplainable and satiefactoriiy small

then the theory is considered to be valid for such purposes.

If we were lucky w~th 'he stochastic learning theory we

might find a large class of human choice experiments explained

by it ir this sense. For instance, if thle estimates of the

rs
pazameters NK were found to agree well in repeated trials with

the same person in some one experimental learning situation then

Are
we would accept this as evidence that the Mij were physical

constants ano J'haracteristic of the situation. If these same

valuts were found for many types of humans, but another set of

constants was found repeatedly for rats in the same experimental

situation, then we would accept 'his happily as evidence that

our theory had still wider scope. Thus, scientific development

oonsists in increasing the extent of Zhe subclass of situations

that can be explained reliably by each hypothesis and In sharpening

tle boundary between this subclass and others in which the

hypothesis fails.
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And so with the stochastic learning t v "" A goGd r~rat

step would be to find any experiment with humans, involving

choices and rewards, that can be repeated over and over again

yet always yielding essentially constant N,,. Then a good second

step would be confirmation of this constancy In quite a different

experimental situation. As an ezample, suppose that the Mre

could be estimated roliably for a rat and a man with the samae

-vr:-_a •t -- Just as they can both be weigh~d on the

same scales, and that these estimates - and ran are used
rat Nman

successfully to predict the amounts that the man and the rat

woald each win playing cooperatively in some carefully selected

non-zero sum game; then this result would increasf our confidence

in the validity of the learning theory in such situations.

Turn now from scope to symmetry, and start with the notion

that there must have been a ftrst occurrenie for each choice-

situation met by the organism. On the first occurrence, esserr-

tially by definition, there would be no way for the organism to

have a bias in favor of any single choice. Furthermore, if the

theory Is to be of use, the numbering of the choices is arbitrary

and the validity of the theory cannot be dependent upon the

numbering actually selected. In other words, the matricts M r

must be such that any two vectors q(t) and q(t+l) obtained by

applying the same permutation to the components of pit) and V(t+l)

must satisfy the relation

q(t+,) - req(,)

whenever

p(t+l) - Mrsp(t),



and provided that the permutation leaves the ath component

unchanged. In the next seution, where this assumption is stated

more precisely, it is shown that symmetry restricts the matrices

NRe very considerably; the number of independent parameters is

reduced to three for each event class whanever there are more

than two choiees, and to two for each event class otherwise.

i4. SYmetrical Model

We start with stochastic matrices Mre, for r-O,1 and

s-l,2,.-.,m, as in Section 1. In this section, it will s&Aetimes

be convenient to omit the superscript r when the argument is

independent of this distinction. Purthermu'ro. it will be enough

to mak. the arguernt for some one value of s, say s-1. since an

-yeactlr simliar argument holds for other values of s; so we also

omit thM superscript s, with the understaru'Ing tLat we are dis-

vaLaing only Nrt explicitly in thic section, and consider the

eleu'ntI ij of this typical stochastic matrix N-M .

l ar sywuetry ass~aption is now equivalent to the condition

Thp(t) -

where T i any permutae.on ratrix such that T1 1 - . and where

p(t) is " probability vector. Since p(t) can be any unit

vector, an equivalent condition is simply that 4 must commute

with every T wue may set

S--,m•.2) 'q - Mw a !.



-7-

A,n equivalec~t requirement Is, therefore, that

4.3) Fjx . M- x alt! yj - fyi or 1,J-2,-..,m;

x, y-',2,,' ,m.

It follows easily from .3,', when m > ?, that K must be of the

form

r r r r1-(m--l)a b b .. • br b

ar •r
" l-1-b r--or

_r r

•I r

a r _%____

M- 2
ar Cr

where a, b, and c are three parameters subject only to the

reet.ictions:

0 < a < 1/'M-1)

4.5)
< c . 1,

O < b+c < 1.

When m-2, there are only two parameters, and M is of the forr.

4.6) M - (
a A-b ii

where a and b are arb~tTiry within the closed atnit interval.

Of co..rse, the general symmetrical model Krs is obtaineu by

permiutlng the 1at and ath rows and the 15t and ath col,mins of

M(ar br cr) as defined by the relations 4.4) anj 4.6)



5. Some Comparisons

Bush and Mosteller4 have proposed a specialization of tne

general operator Mrs of Sectlon 1, calieu by them tne "combining

classes" rrodel, wretch is determined by the requirement that

condition 1.1) reduce tu the condition

5.1) Pi(t+1) ra• 1 (t) +r

Of course, the paraemeters app.earing In 5.1) dre also B3LbJP'it. to

the r.5trct Ion s

c •\re8 m r8 rs M• r8 rs re rs;

a - a , , < m1n 1 b,"

0< <[ < 1.

In matrix form, as hre beer shown by Bush and Thompson, 3 5.i) and

5.2) are equivalent to

rr

a +

r 8

where the ir are compor.ents of an art itrary ro~a

vector and ars le -jA'ect only to tne rstrrctlon

re

min -
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Include some ordinary error parameters in our theoretical model

before we can complete the estimation calculations in meaningful

terms. I shall now introeuce a new learning model, including an

error parameter, to clarify this point.

Ab in Section 1, the component p*(t) of an m-dimensional

pro 6.'lity vector p (t) represents the probability of response

i after moment t. Now we introduce an auxiliary m-dimensional

probability vector q(t), with components q,(t), that satisfies

the stochastic relation

r a
6.1) q(t+1) - M t tq(t);

where Nre, rt, and at have the same definitions as in Section 1.

Finally. we define p jt) by the relations

6.2) p*(t) - ýt) If rt-1  0 ,

p jt) - e if rt-1 - 1,

where ex is the probability vector whcse xth component is unity;

in wowds, this means that the organism never changes its choice

after a rewarded response. It is immediately apparent, that the

likelihood of 2.Z) will be zero with this model for any set of

observational data in which there is even a single exception to

the rule "dun't change on a winner;* and this will be the case

even if the apparent exception is due tL. a clerical error.

We will modify the nodel by adding a new parameter 8

representing Lhe probability that at any moment t, after a

rewarded choice st-1, that a choice st # st-_ will be made at

random among the (rm-l) a tternatives rather than according to the



--1 1--

probability components of p*(t). This leads to a probability

vector p(t) defined by the relation

b.3) p(t) - q(t) if r - O,

p(t)- (1-e)e + --•-( j-e 5  ) if - i,
e t-1 M-i",

where J is the m-dimenslonal vector whose components are all

unity. The new likelihood function Is then

L[S A I] is[ (1) TFPs (t)][iV f
where rh.. - 1, A is the number of times at*- at*-., and B is

the number of times st. t st ._* It is easily seen that the

value of e that maximizes this likelihood is

o.5) e B

A+B

With the statistical parameter e included, a clerical error

after a rewarded choice need no longer make the likelihood

zero.

Perhaps a better way to include the error parameters is

to distinguish between those occurring after a rewarded choice

and those after a non-rewarded choice. This can be rationalized

by noting that there are really two rather different types of

errors, one class due to clerical and other obser-vational flaws

and another class due to the inexactness of the theory. F r

example, I suspect that changes after a rewarded choice that

are made wnile the environment is really stationar-y, and with



-12-

no serial correlations, reflect the tendency for orgaisams to

continually search for evidence of non-stationarity, and for

serial correlation; none of our models is general enough to

match such tenaencies.

For a moment then, we will consider a model in which two

statistical parameters appear. We start with any model, like

those specified by 1.1) or 6.2), in which there 18 a vector

T(t) whose component p8 (t) represents the approximate probability

that the organism will make choice a after moment t. We next

suppose that the probability is el after a rewarded choice, and

0 0 after a non-rewarded choice, that the orgnism will not choose

according to the vector T(t); alternatively, the parameters e"

and e0 can each be thought of as Joint probabilities of theore-•

tical and observational error. The probability vector p(t) that

we should use to represent total behavior is, therefore,

6.6) pit) -[(t (1--r

The likelihood estimates of 80 and 01, for this model, cannot

be written explicitly for the general operator Mrs that yields

F(t+l) from ý(t); this was possible for the model of 6.3) only

because the factors of the likelihood function involving e were
re

not dependent jpcn Mi,.

7. A Preferred Model

I prefer the stochastic learning model defired by 0.3)

und 6.6), where q(t) satisfies a stochastic relation of the

form 1.1) with MKr of the form 4.4) or 4.6). This model is not
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of the form 1.1), where rtst is required to be a stochastic

matrix, but it is of the form I.1) if Ntt Is interpreted

as a more general operator. ThiL "• referred Model" includes

error parameters 6J, provides directly for the "don't change on

a winne&R principle, and restricts the class of operator matrices

as required by the symmetry assumption. The Preferred Model,

for m > 2 and starting at moment to, has the following m+6

independent parameters: pi(t 0 ) for i-l,2,..,m--1; aj, bJ, cJ,

ej for J-1,2. We think of the parameters OJ as relevant to

corrections both for clerical error, and for such thooretical

errors Fs those due to apparent non-stationarity or serial

correlation in the process.

The main hypothesis is that the theoretical scope for the

Preferred Model is the class of all m--choice repetitive situations

for organisms acting in a stationary serially uncorrelated

environment, and one in which each repetitive m--choice situation

has a first occurrence at moment t-l1 The simplest expertments

to test thls hypothesis will probably be those in which the

paramteters pi(t 0 ) will all be taken equal to (i/m), on the

assumption that the experimental choice-situation represents a

first occurrence, at least at the start of work with each new

subject.

In a very strorg sense, the main hypothesis would be

supported if all the ppr mitern were found to be eesentially

constant over a class of situations In which the value of m

and the freqienctes of reward and non-reward were varied widely.

There would also be good support for the hypothesis if the
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parameters al, bJ , and ci were found to remain essentially

constant over a class of situations in which m wes held fixed,

and the initial trial with each subject was controlled to be a

first occurrence with pi(t 0 ) - (1/m), but the frequenoles of

reward and non-reward were varied.

Unfortunately, it is not at all necessary that any parameter

explicit in the model be observationally rather constant, over

an appropriate class of experimental situations; it would be

enough if only certain functions of the parameters were obser-

vationally constant. In this sense, one car. never reject the

model; one can only note that a particular set of observations,

as they were interpreted in terms of the model, do not lend

suppcrt to the main hypothesis. Such a result is non-constructive,

since progress requires success in cbserving constancies relative

to the model. In all, then, the Preferred Model and the main

hypothesis can never be more than guides for experimentation; In

this sense, what we really have is only a guide to preferred

experiments.

8. Some Preferred Experiments

There is much to be said for first testing the main

hypothesis for the two-choice situation, since in this case

there are two fewer parameters than when m > 2. And it will

certainly be easier to control the starting vector p)t o) than

to estimate It from the experimental data.

If success is met in the two-choice case, in the sense

that all of the five parameters remain essentially constant,



then it will onl5 be necessary to estimate the two new parameters

in the three-choice case if it should be true that values are

independent of m. If all this goes well, it will provide wtrong

support for the ttL -y if these same constant parameter values

are found as m Is increased.

It is reasonable to hope that all the parameters, in the

m--choice case, will be essentially constant as the rewara and

non-reward frequencies are varied. In this favorable event, it

will be deasrable $o try other variatiens in the condition, s

surrounding the m--choice case, such as amount of reward, in urde"

to find the experimental bounds within which the model seems to

be valid (its scope) in m-choice situations.

Perhaps the most important of all experimental design

consideratlons is the requirement that the data not only be

adequate to determine the parameters but that the estimation

calculations be manageable. The best way that I can now see to

hand'e the estimation problem is to keep the number of successive

playm smali in any one sequence after starting with a probability

vector assumed known. More specifically if the total experiment

with one subject consists of n sequences of N plays each, in

which the starting vector in each sequence is (J/m), then N

sho id be kept as small as possible and n should be fairly large.

For 4xa~mple, if m-2 and N-4 then the parameters in all the models

considered in this paper are easily estimated if n is large

enough; the method of estimation is illustrated in Section 9.
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This very brief outline can only suggest the dir*,tion for

preferred experimentation at the start, since later designs must

depend upon the results of earlier tests. Generally speaking

the object Is to proceed from the simple to the more complex as

observed constancies permit this type of development.

9. Parameter Estimation

The general method of parameter estimation will ue

illistrated in this section by calculating some of the formulas

for one model-experiment combination. The method Is quite general,

if the experiments are carefully designed for the purpose, and

seems to provide manageable estimation formulas for most of the

models discussed In this paper.

The model is defined by the following rela~lons:

/i a 2 1-b r1-a r.
9.:) N = ar br \ Mr2 ( r

S1--a 1-b r r (r

0 < ar , 0 < br .
r-r

8 t 0 as
9.2) q(t+l) - (rtM +(1-rt)M t)q(t) for t-1,2,.*.,N.

9.3) p(t) - rt['1--w)e_,+w(J/2)]+(1-rt)q(t) for t-2,3,..-,N.

9.4) p() - q(1) - (Ji 1 2).

The experimental deaig•i prov!des that;

a. Each of n trials requires five s.iccessive choices

between two alternatives.
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b. The probability of reward on the Ith choice in

each trial is ri, and the v are constant from trial to

trial.

c. The result of reward or non-reward is in every

instance ind-pendent of the choice actually made.

d. The pattern of reward and non-reward is determined

independently for each trial by means of a table of random

numbers.

In practice, I have used a punchboard with two co]I mns %A 4iV

rows. There aie 32 possible patterns of reward and non-reward

for one trial, since each of five rows is either rewarded or

non-rewarded, and the choice among these Is made according to a

probability distribution determined by 32 probabilities 9j; of

course the rI are determined uniquely by the f. Most important

of all, every effort is made to convince the subject that the

trials are Independent, so that he will not be influenced in

his behavior in any one trial by his experiences in earlier

trials, Actually, any other (5x2) design that preserves Indepen-

dence between trials, syrmnetry between columns, and Independence

between and w~tAln columns of one trial would provide the data

necessary for estimation; pr-vided all possible reward patterns

appeared sifflclently often.

The tLa•-' observational quantIties that we shall use are

frequencles defined as follows:

rjr 2 ... r Nu-ter of times in all n trials
518 8 .t(' t+)- that st.4 wms chosen after prior

tchoices si and rtbilte ri.



We shall also need the associated qiantltles:

9.0) 0F ra..#r . Total number of times In all n trials

BZ8 48 t that the choices were sI and results r1 .

9.7) R (s) . t
sjSt at rtrR"••r3 .

5 i a 8 1 4 0 
8  1

The principle of the likelihood estimation method is to
calculate theoretical probab-1itles H-t(s), as finctions of some

t

or all of the parameters ý;f a model, corresponding to each of

several independent observables F t(s). Then the likelihood
"t

function L a LN(ar,br,), for n trials and N choices eac:. trial,

is defined by the relation:

N 2 t t
9.8) log LN Z T 71 (S) log ; (a).

t-1 s'P S-I t t

The recrured parameter estimates are the val es of ar, r' and

w that maximlze LN, whiere each piaraameter Is restricted to the

closed unit--nterval.

UnbIased estl-.tes may Also 'e ob-tained, tho'ugh at a

sacrifIce of preci5son, y. •sing any suprodict of L TNh h
,Lc ,es the terk t(2) If the ter m (. ) 's present. ThIe

t(
ariounts to the assur'tpton that the i (s) are independent

t
dfstr '.utlm f .nctloni of s. 'I as so-,iet'-es 2.O.'enlent "o

make :se of thIs se ectio.n4n order .... te

r, 4,,e1.al a~c .~tions, wlohern the fi• set -I -arLmeters can

thereby e broken. Into ub~s5e- or estimaticn •.ur;,oses.
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As an example, consider the case N-2; then

1 2 r, r, 2 r r1  r1r(

9.9) log La Z F at(s)log 1i (s)+ z s (s)log H (s).
rl-O sla-l rl,r-O sui•ahl it

If only the terms Involving rt -0 and s'sj-I are used, then Just

the two parameters a° and 1o will appear, and the ]ikellhood

expression becomes

2 0o00 00
9.10) log L(a% 1b0  z [?1 (s)log H1 (s)+P1,(S)log H12 (3)],

S-i

where it Is also assumed that F1 (s) > 0 and 00

that:

9.11) 2HI(1) - e#M J - a +bof

9.1-)1 2H0,(1) - e1 M Moj - 1+(1-.ao-bo)(1-a ob

It follows easely, dropping the sibscrIpts on r o and bo, that;

0 ,0( 00 00

9.172 +(2a-2' _(1) (2a-2)P (2)
a--b 2---b tI+( 1-.a-b-)(1--a*b) I-(1---b) (1--a+b)

0 0 O0 00
_lo_ uj4g F1(2) 2bP j{(!) _2bFS2).

~ 14)b a +b 2--a- 1 +(t -a-b)(1--a +b) -Iab(-ab

If we met

-lg -m ca~. -

aJb

o ot .h!-d solve for a and o w'.th the aondl-:.n R,(1) # R11`2),

R~~~a(!)~1 1 ~() u ~ , 1.@ oibtain
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9.15) -in(jand

a+b 2-a-b

R 0(i)1-R00,
9.16) .-- L3A(1 I 1IS•I !L

1+(l-a-b)t(i-e+b) 1-(1--a-b)(i -a+b)

whence

S17 ) • • R • ( 1 ) ] " R , i -0 0
r~a L) a)

2R4(1) - 1

9 [RO (1' lit- 2RI1) - R1 ,(i) 129.,()) -U

0 0 00 0

If either R1 (i) - R1 (2) or P12(i) - R0012) then al.A. so.utons

of 9 15) arnd 9.16) satisfy the condition a + b - 1, and we shall

consider this case separately. We are left with the result that

the function L1 , defined by 9.10), does not attain !ts -maxilm'17

value within the restricted range of the carameters a0 and t 0

except possibly -hien:

-oand 10 satlsfy 9.1-) and a.In) •n• e

withIn the cloaed " -nr . or

c. r

A. , 1, or
-- 0

e. o r 1, Or-- C

"T >+h

It "s easJ:;y .een, reme~er'I:, t•';at ?•\s; > O, ".nat



L2 (0,0) - L2 (1,1) -

-(Fo oo~x- (*F +)
L&(ao,1--a) - 2 > 0,

o oo ooo0•1

- ,+r+F1 ,) F,(!)+FO,(2) F0(2)+F, 2 (21 F
L,(a 0) - 2 12 (2-ao) (I+[I--ao] 8 )

and that La(ao,O) > L2 (ao,1-ao) for some va.ue of ao in the open

ýnit-interval. Conseq'iently, !.t follows that Li attains its

maxim val•e, withIn the restricted range f)r a0 and 'to, only If:

a. a an" b satisfy 9.17) and 9.15), or-- 0 0
.t. a - 0 arn b is In the upen init-Interval, or
-- 0 0

C.19) b 0 - 0, and a is in the open unit-interval, or

d. a 0 1 and t 0 is in the oper inlt-Interval, or

e. - I and a 0s In the open unit-lntAerval.-- 0 0

It Is a tedious 'ut stralghtforward ca.(, :atlon to detemnine the

estimated .a.ues with the help of the cond!-.Jons q.1.1.

In on.e •Iot experiment, the oLuserved va'les were
,,F 2) 1?, Fi) - Ci, •,t?• - 19,

Rj(1 1 /R 1 2  ) = 1,.0.

"'Js"ln '") e .a'c

JeJ

.- 1
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Consequently, we must consider the possibilities:

2!42 L(Ob) - b40(2-b) 8 0( 2 -ba)k1 - H,(b),

2 1 42 L(a,O) - a21(2-.a)99(2-2a+as)41 - HS(a),

9.20) 212L(1b) - (I+b)3(1-b)121(1+bR)19 - H,(b),

214 2 L(A,1) " (1+a)2(1--a)1 6 2(1+2a-&a) 1 9 - H4(a).

The following inequalities are easily verified:

H4 (a) < 221, HS(b) < 262, H9(1/5) > 1019 > 262,

and the required solition Is therefore determined Ly HI(b) or

Ha(a). The maximum values of Hj(b) and Hm(a) are approximately

Hi(1/5) - 1019 > Ht(2/3) - 1011

ard so the required estimate is

a -0.220, b0 M0;

it is also to be expected that neither a nor b 0 is 1 because

9.15) requires that their sun be approximately 2/41. The estimate

for a can be determined more exactly by solving for It as a root

o-t the equation

9.21) lOla 3 - 264aa + 244a - 42 - 0.
0 0

We turn now to the obsei.vabLes FP(s) and FP(s). The

likelihood function correspondi-ig to these qiantltles is

L(w,) - (.-/2) (,,,//2)



It t5 easily seen that the value of w that maximizes L(w) is

X( F11(2)

T2 2F1 + Fit

More generally, if all the experimental data were used to

estimate w, it is easily seen that the result is:

2f*

f +f*

where f Is the number of repeats after a winner and f* is

the number of non-repeats after winners.

For the pilot experiment the estimate is

2f* 0w 21-* - using N -3 only.
f+f* 33

Actually, in the pilot experiment, the subject always repeated

after a winner so the estimate is still w - 0 when all the data

are used.

The estimation of a, and b, reqitres that data for N - 4

be used, and the calculations are a bit more tedious so the

details are omitted here. The method is exactly analogous to

that j ist .sed for obtaining estimates of a and b -

10. Summary

A stochastic learning model is proposed in which:

a. Explicit provision is made for errors of observations.

b. Separatt allowance ts made for the "don't change on a

winner" principle.

4
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c. The number of independent paramtere is reduced, from

that In the general matrix operators used by Bush and Mosteller,

by a 'symmetry assumption.

d. A preferred model Is introduced and discussed, but

It is no•ilikely that the learning theory represented by this

model will 'have great scope.

e. The significance of these matters, with respect to

measurement of the physical constants hypothesized by such

stochastic learning models, is discussed in relation to similar

questions pertaining to a few alternative models.

f. An experiment is described, together with a method for

estimating parameters, that should be adequate to provide a

critical test of the various alternative theories discussed.

iN
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